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SYNOPSIS 

An asymptotic formula has been obtained for the axial tension in nonlinear viscoelastic 
fibers undergoing inhomogeneous stretch. The formula, which is valid to within an error 
of the fourth order in diameter, expresses the tension per unit cross-sectional area in terms 
of the history of the local axial stretch and its first two derivatives with respect to distance 
along the fiber axis. The theory obtained by treating the formula as exact is consistent 
with thermodynamical principles, and permits computation of the stretch field resulting 
from a specified tensile loading history. Numerical results for creep under static load show 
that for an appropriate class of materials with slowly fading memory there is a range of 
applied loads for which an initially homogeneous deformation evolves into a well-defined 
neck whose edges, after a period of relatively quiescent incubation, advance rapidly along 
the fiber and in so doing transform moderately stretched material into highly stretched, 
i.e., drawn material. The calculated fiber profiles and the predicted dynamics of neck for- 
mation are in accord with familiar observations of neck formation in polymeric materials 
susceptible to cold drawing. 

INTRODUCTION 

In 1932, the phenomenon called “cold drawing” was 
described as follows by Carothers and Hill,’ who 
clearly realized its eventual importance for the pro- 
duction of polymeric fibers and films of high strength 
and uniform properties: 

In connection with the formation of fibers the w-poly- 
mers exhibit a rather spectacular phenomenon which we 
call cold drawing. If stress is gently applied to a cylindrical 
sample of the opaque, unoriented 3-16 o-polyester at room 
temperature or at  a slightly elevated temperature, instead 
of breaking apart, it separates into two sections joined by 
a thinner section of the transparent, oriented fiber. As 
pulling is continued this transparent section grows at the 
expense of the unoriented sections until the latter are 
completely exhausted. A remarkable feature of this phe- 
nomenon is the sharpness of the boundary at the junction 
between the transparent and opaque sections of the fila- 
ment. During the drawing operation the shape of this 
boundary does not change; it merely advances through 
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the opaque sections until the latter are exhausted. This 
operation can be carried out very rapidly and smoothly, 
and it leads to oriented fibers of uniform cross section. 

In the subsequent literature the “transparent” or 
“thinner” section is referred to as the neck. 

The materials in which cold drawing was first ob- 
served and is most frequently studied are semicrys- 
talline polymers. Because cold drawing, accompa- 
nied by a stable neck of the type described by Car- 
others and Hill, has been observed under the nearly 
isothermal conditions that result when either low 
rates of stretching or sufficiently thin specimens are 
employed, adiabatic heating does not appear nec- 
essary for the phenomenon. We discuss below some 
results in a recently formulated theory2 of the 
rheology of neck formation in isothermal cold draw- 
ing. To obtain the theory we treat a fiber as a three- 
dimensional body composed of an incompressible 
simple fluid3 with slowly fading memory,4*5 and we 
derive, for the limit of small fiber diameter, an 
asymptotic formula for the axial tension T resulting 
from inhomogeneous stretch. The formula gives T 
as a functional of the history of the axial stretch 
and its first two derivatives with respect to distance 
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along the fiber axis. This formula and an associated 
asymptotic expression for the free energy per unit 
length are then employed as the basic constitutive 
relations of a unidimensional body, and the resulting 
model of a fiber with slowly fading memory is shown 
to be consistent with thermodynamical principles. 
The model has been employed to calculate the creep 
response of fibers under static loads. Numerical so- 
lutions of the evolution equation for the stretch in 
creep show that for an appropriate class of materials 
with long range memory there is a range of applied 
loads for which an initially homogeneous deforma- 
tion evolves into a well-defined neck whose edges 
advance at high speed along the fiber and in so doing 
transform moderately stretched material into highly 
stretched (i.e., drawn) material. The calculated fiber 
profiles and the predicted dynamics of neck for- 
mation and growth are in good accord with familiar 
observations. 

ON THE TENSION IN VISCOELASTIC 
FIBERS 

To describe a motion of a three-dimensional body, 
one may write Xftl(x, {) for the place in space, at 
time {, of the material point that is a t  the place x, 
at  a time t which is interpreted as the present time. 
If one puts FItl({) = VxXltl(x, r) ,  then the sym- 
metric positive-definite tensor Fltl ( {) TF[tl ( {) is the 
right Cauchy-Green tensor at time I, computed us- 
ing the configuration at time t as the reference. Now, 
let G ( { )  = [Frtl(r)TF[,I({)]-l anddefinethe history 
up to time t of G to be the function G' on [ 0,  co ) 
for which 

G ' ( s )  = G ( t  - S )  

= F[,l(t - s)-' [F[,](t - s)-lIT (S 2 0 )  (1) 

At each material point of a simple incompressible 
fluid, the Helmholtz free-energy density 9 (per unit 
volume) and the tensor S, ,  which is related to the 
stress tensor S of Cauchy by the equation 

s = -pl + s, ( 2 )  

for each orthogonal tensor Q, i.e., each tensor Q 
with QQ = 1,  the unit tensor. In eq. (2) ,  -p2 is 
an unspecified hydrostatic pressure; S, is called the 
extra-stress tensor. 

As we here confine attention to isothermal pro- 
cesses, the second law of thermodynamics is equiv- 
alent to the assertion that, if we put 

d 
dt (5) e a ( t )  = S ( G ' ) . L  - - p ( G t )  

with L = L ( t )  the present value of the velocity gra- 
dient and 0 the (constant) absolute temperature, 
then for all choices of G' and L (subject to the con- 
straint of incompressibility which requires that 
det G' = 1 and t r  L = 0),  we must have 

a ( t )  2 0 (6 )  

because a is the local rate of production of entropy. 
In the thermodynamics of materials with memory 
it is shown that, under appropriate smoothness as- 
sumptions for constitutive functionals, the require- 
ment that a ( t )  never be negative implies that the 
free-energy functionalp determines the stress func- 
tional S by a formula called the "generalized stress 
relation".6 

The calculations we report here were done for a 
class of incompressible fluids for whichp has the 
form 

where each of the functions Kj  is positive on [ 0, 00 ] 
with 

and is normalized so that 

r m  

J K, ( s )ds  = 1 (9) 
0 

are given by constitutive equations of the form 
and each of the functions Hj obeys the relations 

in whichp and S are functionals that are isotropic 
in the sense that they obey the identities [In eq. ( S ) ,  K J ( s )  = d K j ( s ) / d s . ]  
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Application of the generalized stress relation to 
( 7) yields 

where VHj is the tensor-valued gradient of Hi. 
Materials obeying this last relation form a class of 
BKZ fluids.7 For the example to be considered in 
detail below, the functions K, and Hj are chosen such 
that, although the material has the symmetry of a 
simple fluid and obeys a weak hypothesis of fading 
memory, it does not have finite steady-state viscos- 
ity, for it cannot undergo either steady shearing flow 
or steady extension' at finite stress. 

When/z is as in (7)  and S as in ( l l ) ,  eq. (5) 
implies the relation 

and hence, by (8) and ( l o ) ,  the dissipation inequal- 
ity (6)  does hold here. It follows from (4), that the 
functions Hj are isotropic and hence there are com- 
pletely symmetric functions hj of positive triples 

the proper numbers of G ;  thus, (3), and ( 7 )  yield 
suchthatH,(G) = h,('$l, '$27 '$3)7 where '$17  '$27 '$3 are 

where the [ f  (s) , i = 1,2,3,  are the proper numbers 
of G f ( s ) ,  and, by ( l o ) ,  

It is further assumed that, for each positive number 
t ,  

This last assumption is equivalent to the assertion 
that in the rapid homogeneous stretch of a previously 
undeformed circularly cylindrical bar the resulting 
axial tension T is positive for axial extension ( X > 1 ) 
and negative for axial compression ( 0 < X < 1 ) ; an 
assumption that is clearly in accord with experience. 

Consider now a body, which we may call a fiber , 
that in a reference configuration 3 has the form of 
a long, thin cylindrical rod of circular cross section 
and diameter D. Suppose the motion is such that, 
in a cylindrical coordinate system with the Z-axis 
along the axis of the rod, 

6 = 8 r = ~ ( 2 ,  t ) R  z = 2(Z, t )  

( 0  I R I 0 / 2 )  (16) 

where 6, r ,  z are the coordinates at time t of the 
material point with coordinates 8, R ,  2, in R. As 
the material is assumed incompressible, the motion 
is isochoric and hence 

with A the (axial) stretch, defined by 

Note that, by (16) and (17), the function 2 deter- 
mines the motion. For the dynamical processes most 
frequently considered in the present theory, it can 
be assumed that the body has been in the configu- 
ration R for all times previous to t = 0, i.e., that for 
{< 0, F(Z, {) = 2, and hence v ( Z ,  {) = X ( 2 ,  {) = 1. 

For a motion of the type (16) one can show, after 
some calculation, that the proper numbers [f (s) of 
the tensor G'(s)  (s 2 0) obey the relations 

in which 
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The value J / (  t )  of the functionalp in eq. ( 7 )  is the 
density of the Helmholtz free energy per unit volume 
of fiber regarded as a three-dimensional fiber. The 
average of J / (  t )  over the cross section with axial lo- 
cation Z in %, i.e., 

is the linear density of the Helmholtz free energy at  
the material coordinate Z at time t (per unit of 
length in the reference configuration) for the fiber 
regarded as a unidimensional continuum; this linear 
density \k has been normalized by division by the 
cross-sectional area of the fiber in its unstrained 
configuration %. By placing (19) into (13), one may 
show that 

where 

and the functions f and g are related as follows to 
the functions K, and h, that characterize the three- 
dimensional material: 

It will be noticed that the function g in the second 
term (on the right) in (22)  is proportional to D2 
and is determined by the function f which is inde- 
pendent of D and which governs the response of the 
fiber to homogeneous deformations. As 

the second term in (22)  tells us that for inhomo- 
geneous motions, when terms O (  D2) are taken into 
account, \k is influenced by the history of the spatial 
gradient Xz of the stretch X and the term of the low- 
est order containing the history of Xz is quadratic 
in that history. 

Neglect of the term O( UD4) in (22) yields an 
explicit constitutive equation for the ( normalized) 
linear density of free energy in a theory of fibers 
regarded as unidimensional continua. In such a the- 
ory the basic kinematical variable is z = Z ( Z ,  t ) ,  
and under the assumption that the resultant of the 
extrinsically applied forces per unit length, if it does 
not vanish, has a component b(Z,  t )  only in the Z- 
direction, the law of balance of linear momentum 
becomes 

T z  + pb = p.2 ( 2 7 )  

with 2 = d22"(2, t ) / d t 2 ,  with p the mass density 
(which also equals the normalized linear mass den- 
sity per unit of length in %), and with T the nor- 
malized tension in the fiber, i.e., the total tensile 
force acting across a normal section divided by the 
cross-sectional area in %. By a somewhat lengthy 
argument similar to that by which (11) is derived 
from (7 ) ,  it is shown that the constitutive equation 
for T resulting from omission of the term O( UD4) 
in (22) is 

Moreover, one can show that the unidimensional 
theory of nonhomogeneous axial motions of a vis- 
coelastic fiber obtained by taking (28) as an exact 
expression for the tension is compatible with the 
second law of thermodynamics in that it yields a 
non-negative expression for the rate of internal dis- 
sipation, i.e., that part of the rate of decrease of ?Tc 
that results from past changes in A, XZ, and XZZ- 

AN ILLUSTRATIVE EXAMPLE 

So as to have, for illustrative numerical calculation, 
an example of a three-dimensional material suscep- 
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tible to cold drawing that is describable by consti- 
tutive relations of the type ( 7 ) - ( 11 ) , we may let 
the number n be 3 and suppose that the functions 
H, have the forms 

Pl 
HI (G)  = - t r (G - 1 )  

2 

PZ Hz(G)  = - t r (G2 - 
4 

H 3 ( G )  = 2p3tr(41 - [G + 31]e-(G-1)/4) 1 
in which pl , p z ,  p 3  are appropriate positive constants. 
By putting 

pi = 0.05 pz = 0.002 p3 = 0.35 (30) 

we obtain a viscoelastic material for which, as we 
shall explain below [after eq. (39) ] ,  the instanta- 
neous (i.e., high-speed) stress response from a rest 
state in which G' = 1, is the same as that for an 
illustrative elastic material studied in our earlier 
work?," The formulae (29) yield the following 
expressions for the functions h; in the relations ( 13) 
and (24) : 

It is easily verified that the relations (14) and (15) 
hold here. The functions K, can be written 

K ; ( s )  = -dG,(s)/ds (32) 

where, by ( 9 ) ,  each Gj is a relaxation function nor- 
malized so that 

Gj(0) = 1 (33) 

It is a consequence of this normalization that the 
small-strain high-speed moduli of the material are 
determined by the material parameters pj. [The 
values shown in (30) give E (  1 )  = 1.212 and ps( 1 )  
= 0.404, respectively, for the tensile modulus and 
shear modulus for rapid small deformations from 

the state in which G t  = 1. A change in units of force 
is equivalent to multiplication of the p; by a single 
scale factor.] There is a broad class of semicrystalline 
polymers whose viscoelastic response can be de- 
scribed, approximately, by relaxation functions that 
vary, for large values of s (e.g., for s > 1, in seconds), 
as ( c  + s ) - ~ ,  with a in the range 0.05 < a < 0.2. By 
putting 

G l ( s )  = ( 1  + s)-'.~' G2(s )  = (1 + s)-O.OS 

G3(s )  = (1 + S ) - ' . ' ~  (34) 

i.e., 

Kl(s) = 0.12( 1 + s)-l.12 

K 2 ( s )  = 0.06(1 + s)-l-06 

K 3 ( s )  = 0.18( 1 + s)"," (35) 

one can mimic, in a rough way, the rheological be- 
havior of typical semicrystalline polymers suscep- 
tible to drawing. It is clear that the expressions (35) 
are compatible with (8). 

When the deformation of a fiber is homogeneous, 
i.e., when X in eq. (18) is independent of 2, the con- 
stitutive eq. (28) reduces to 

To gain some insight into the implications of the 
relations (30) - (34) for homogeneous stretch, one 
considers a motion in which a previously unstrained 
fiber with length L is, a t  time t = 0, rapidly and 
homogeneously stretched to length XoL, Xo > 1, and 
is held at fixed length for subsequent times. In such 
a motion the tension, T( t )  , jumps to a positive value 
at  t = 0 and then decays. In eq. (36) one has, for t 
> 0, 

and hence T( t )  is given by a function 7 of X o  and t. 
On putting the expressions (24), (31), and (32) into 
(36), we find that for the history (37) 



1002 COLEMAN AND NEWMAN 

and it follows from (33) that the tension immedi- 
ately after the jump in strain, T (  O+ ) , is 

The function Xo - T (  0+, A,), which describes the 
instantaneous response to rapid homogeneous 
stretch of a previously undeformed viscoelastic fiber, 
has here the same form as the function X - T ( X )  
shown in eq. (62a) of our s t ~ d y ~ ~ ' ~  of elastic fibers 
susceptible to cold drawing. 

A graph of the function X o  +-+ T (  t ,  A,) for fixed t 
is called a stress-relaxation isochrone. In Figure 1 
we show such isochrones based on eq. (39),  with 
the parameters pi as in (30) and the functions Gj as 
in (34). The topmost curve is a graph of Xo-  T (  0+, 
A,). The curves are, in descending order, isochrones 
for times t = O f ,  1, lo', lo', . . . , lo9 seconds. 
The isochrones for t = O+ and t = lo-' seconds are 
nearly indistinguishable. For this particular ( hy- 
pothetical) material, when t exceeds 4 X lo7 seconds 
( -  16 months) the isochrones are monotone. For 
each isochrone corresponding to a shorter time, there 
is an interval (A,, X b )  of Values of Xo on which d7( t ,  
Xo)/dXo is negative; for X outside this interval, &( t ,  
Xo)/dXO is positive with 7( t ,  A,) increasing without 
bound as X o  increases above X b .  This mathematical 
property is a characteristic of viscoelastic materials 
susceptible to cold drawing; it implies that under 
the right conditions homogeneous configurations 

0. 10-1 

A 

Figure 1 Stress-relaxation isochrones at indicated val- 
ues of t for a fiber of a material obeying eq. ( 11) with Hj 
and Kj as in eqs. (29), (30), and (35) .  

will lose stability and either jumps in strain or neck 
formation, or both, will occur. The matter is treated 
in some detail in another paper' in which an analysis 
is made of the creep response to static loads, and 
the stability criterion of Coleman and Zapas" is 
shown to hold here. (For related criteria and reports 
of experimental observations of the relation between 
applied load and the time required for neck forma- 
tion in high density polyethylene, see the papers of 
Crissman and Zapa~.'','~) 

We give below the results of numerical calcula- 
tions showing that the present theory predicts that 
loss of stability can cause the formation of necks 
that closely resemble those observed. Of course, 
when doing calculations for motions that are not 
homogeneous i.e., for which X varies with 2, the 
terms on the right in eq. (28) that are not seen in 
(36) cannot be neglected. The details of the nu- 
merical methods employed are given in Newman's 
doctoral di~sertation.'~ 

CREEP UNDER CONSTANT LOAD 

A motion in which 

0, t < O  
T",  t > O  

T ( t )  = 

with To a positive constant, is called creep under 
dead load, or, for short, creep. 

In Figure 2 one sees calculated fiber profiles 
showing neck formation in creep. The numerical 
problem treated here is that of solving eq. (28) to 
obtain X as a function of z and t under the assump- 
tion that T(  t )  corresponds to creep under dead load. 
[The functions f and g in ( 28) are given by ( 24) 
and (25) with the functions h, and K, chosen to be 
those of the illustrative material whose stress-re- 
laxation isochrones for homogeneous response are 
shown in Figure 1.1 An area-reduction technique was 
employed to localize the place where neck formation 
might begin, i.e., the fiber was weakened by a slight 
reduction of the initial cross-sectional area in the 
region whose material boundary is indicated in the 
figure with vertical dashes. In this case To, the nor- 
malized tension (per unit of initial area outside of 
the thinned region) was 0.6 and gave rise to a value 
of 0.741 for the tensile stress per unit initial area at 
the center of the thinned region. Calculations based 
on eq. (36) show that, for a perfectly homogeneous 
fiber of the viscoelastic material of the present nu- 
merical study, when the dead load per unit initial 
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Figure 2 Calculated fiber profiles showing the formation and growth of a neck in creep 
under a dead load. The fiber, which is assumed to be composed of a material with the 
stress-relaxation isochrones seen in Figure 1, is weakened by a small reduction of initial 
diameter in the region whose material boundaries are indicated with vertical marks. 

area equals 0.741, homogeneous creep becomes un- 
stable when t = 54.5 seconds, and, in accord with 
the theory of Coleman and Zapas, l1 this instability, 
which results in a jump in stretch, occurs precisely 
at  the moment of vanishing of the instantaneous 
( i.e., high-speed) tensile modulus. 

As Figure 2 shows, in the present case neck for- 
mation initiates with a jump in stretch occurring in 
the thinned region at  a time t, between 54 and 55 
seconds. For times t > t# , the fiber contains a region, 
the neck, in which pronounced stretching has oc- 
curred. The neck increases in length, a t  first slowly, 
during an “incubation period”, and then rapidly. In 
the case presented here, after 82 seconds the length 
of the neck is increasing (and accelerating) so rap- 
idly as to render not feasible further calculation of 
the stretch field X by direct solution of eq. (28) .  Our 
numerical study has indicated that, for a broad range 
of initial weakening by area reduction, there is a 
time ? (in the present case t is about 77 seconds) 
such that the rate of advance of the neck at  times t 
> t is independent of the amount of weakening: 
within limits, the more an otherwise homogeneous 
fiber is weakened by area reduction in a short region, 

the sooner a neck starts to form in that region, but 
the longer the neck must “incubate” before its edges 
advance rapidly into homogeneously deformed ma- 
terial. 

One can show that there is a time, t,, at which 
neck growth occurs at a rate that is essentially in- 
finite on the internal time scales of the material; 
under the conditions that are appropriate to Figure 
2, t, = 105 seconds. The shape of the fiber near the 
edges of the neck at  time t, can be calculated using 
instantaneous response functions for T and the 
methods which were developed to calculate the shape 
of a “fully developed draw” in a theory15,16 of neck 
formation in elastic materials susceptible to cold 
drawing. 
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